
PacMan AI Controller

[For the pacman vs ghosts league]

Rodrigo Castro
Trinity College Dublin

MSc Interactive Entertainment Technology
cs7032: AI and Agents

28/01/2013
12324964

castrodr@tcd.ie

ABSTRACT
This paper provides a simple algorithm for maximizing the
score of a PacMan AI controller in the Ms PacMan vs Ghosts
Java-based environment. It includes two different strategies
and a discussion of the results. Finally, a comparison is
made between this and other well-known agent algorithms.

Keywords
AI, Agents

1. INTRODUCTION
PacMan is an arcade game of the 80’s where the player con-
trols the agent through a maze filled with pills and ghosts.
Recently, the game was ported to Java, and a competition of
agents was organised. This document describes our PacMan
agent for this competition.

2. RULES OF THE GAME (AS OF JANUARY
2013)

The goal of Ms PacMan is to eat as many pills, power pills
or edible ghosts as possible. Four different ghosts pursue Ms
PacMan all over the maze. There are four different mazes.
A life is lost if they touch Ms PacMan. The game is over
after there are no more lives available. The game starts with
3 lives. One additional life is given at 10 000 points.

When Ms PacMan eats a powerpill, the speed of the ghosts
is reduced in half and their direction is reversed. When Ms
PacMan eats one ghost it goes into the lair for a while.

When all the pills have been eaten, the game moves on to
the next level.

3. FORMALIZING THE PROBLEM
The Ms Pacman problem can be seen as a maximization
problem. The bigger the score, the better it is.

Max(Scores)

To maximize the score, Ms PacMan should eat as many pills
and ghosts and should survive for as long as possible.

4. OUR APPROACH
We have proposed the following behaviour in order to max-
imize the score:

Ms Pacman chooses a movement that will lead her to the
closest and safest region having the greatest amounts of pills.

The behaviour can be summarized by the following algo-
rithm:

Choose the best target node per direction:

Targett+1,direction = argmax
t

ft(Pillsregion, distanceregion, dangerousnessregion)

In some cases the targets will not lead to all possible direc-
tions. In that case, add the nearest junction as target within
that direction. Then choose the best direction:

directiont+1 = argmax
direction

Targett+1,direction

4.1 Pills region
The pills are clustered by connected components. 1 The
algorithm to find the clusters is as follows:

Init

Cs = List clusters, initialize with a single

cluster containing all pills

Each time a pill P is eaten do:

C = findClusterContainingP(Cs, P)

Remove C from Cs

For every possible neighbour Ni of P do:

Create a new cluster Ci,

Split C at Ni for Ci

Add Ci to Cs

End

End

1http://en.wikipedia.org/wiki/Connected_component_
(graph_theory)

Figure 1: A sample of the clustering algorithm

Split C at Ni for Ci

Remove Ni from C

Add Ni to Ci

For every possible neighbour Nj of P do:

Split C at Nj for Ci

End

End

It can be seen that the splitting algorithm is linear with
respect to the number of nodes (When a graph is used as
data structure). Testing if a node belongs to a cluster has
a worst-case complexity of N. To make this function faster,
a different data structure needs to be used. When using
an ordered set as the main data structure for a cluster, the
findClusterContainingP becomes a binary search (logarith-
mic complexity) and thus, splitting the cluster becomes lin-
earithmic.

5. DISTANCE REGION
The distance to a region is computed as follows

Dr = min(Dshortest(Pc, Pi))

Dshortest is the length of the shortest path between Pc, Ms
PacMan’s current position and Pi, an element of the pills
region (cluster) i.

The shortest path is pre-computed using a∗. The complex-
ity of getting the shortest distance value becomes constant.
Therefore finding the distance to a cluster of pills is linear.

5000 10 000 15 000 20 000

50

100

150

200

250

300

350

Figure 2: Score histogram for the Aggressive Ghosts
controller using 1 strategy, 1000 iterations.

6. DANGEROUSNESS
The concept of dangerousness is the probability of finding a
ghost on the same path as Ms PacMan. It is defined between
0 and 1.

In practice, the dangerousness has been simplified to the
following cases:

• 1 if a ghost is headed to the same junction as Ms Pac-
Man and the ghost is closer to that junction.

• 1 if a ghost is on the same path and opposite direction
as Ms PacMan.

• 1 if the next junction has no ghost-free paths.

• 0 Otherwise.

7. RESULTS
The game was played a thousand times with different ghost
controllers. For each controller we present the mean, the
median, the standard deviation, the min, the max and the
histogram of the scores.

7.1 First approach
The approach used here is the one described in the section
”Our approach”

7.1.1 Aggressive Ghosts
Mean 3571.91

Median 3020

Standard Deviation 2956

Min 70

Max 22 670

This ghost controller shows the best average result for our
Ms PacMan controller. Unfortunately, scores tend to vary
a lot as it can be seen from the standard deviation. Some
scores are above 20 000 and there are quite a few having
very low scores. Running the experiment multiple times
gives similar results.

1000 2000 3000 4000 5000

50

100

150

200

250

300

Figure 3: Score histogram for the Starter Ghosts
controller using 1 strategy, 1000 iterations.

1000 2000 3000 4000

100

200

300

400

Figure 4: Score histogram for the Legacy 2 The
Reckoning Ghosts controller using 1 strategy, 1000
iterations.

7.1.2 Starter Ghosts
Mean 1211

Median 935

Standard Deviation 831

Min 230

Max 5370

This ghost opponent gave the second best result for Ms Pac-
Man. The average score is around 1211, with a peak near the
800 points. The standard deviation, which is quite large, is
reflected on the histogram pattern. Running the experiment
multiple times gives similar results.

7.1.3 Legacy 2 The Reckoning
Mean 1075

Median 1070

Standard Deviation 510

5000 10 000 15 000

100

200

300

400

Figure 5: Score histogram for the Aggressive Ghosts
controller using 2 strategies, 1000 iterations.

Min 70

Max 4310

This ghosts controller was probably the hardest for Ms Pac-
Man. The average score being slightly lower than the rest of
the experiments. The standard deviation is smaller, which
can be observed on the previous histogram. Running the
experiment multiple times gives similar results.

7.2 Second approach
In the second approach, a second strategy was added: if an
edible ghost is within reach and it is safe to go there then
go and eat it.

7.2.1 Aggressive Ghosts
Mean 3177

Median 3710

Standard Deviation 2744

Min 70

Max 17980

This time, three peaks appear probably due to the fact that
ghosts where too close to each other when Ms PacMan had
eaten a power pill and started chasing the ghosts.

Using 2 strategies for this controller resulted in a slightly
worse average score than when using a single strategy.

7.2.2 Starter Ghosts
By using 2 different strategies against the Starter Ghosts
controller, we managed to significantly improve the average
score. We observe the values tend to concentrate around the
average score.

Mean 2585

Median 1950

2000 4000 6000 8000

50

100

150

200

Figure 6: Score histogram for the Starter Ghosts
controller using 2 strategies, 1000 iterations.

1000 2000 3000 4000 5000 6000 7000

100

200

300

400

500

600

Figure 7: Score histogram for the Legacy 2 The
Reckoning Ghosts controller using 2 strategies, 1000
iterations.

Standard Deviation 1178

Min 70

Max 7210

7.2.3 Legacy 2 The Reckoning
Mean 2555

Median 1950

Standard Deviation 1095

Min 330

Max 7250

Again, we observe three different peak scores as with the
Aggressive Ghosts controller. And again, the average score
and, more generally, the distribution of the scores is better
than using a single strategy.

7.3 Discussion of results
7.3.1 First approach, one strategy

The Ms PacMan controller seems to behave correctly in the
following simple conditions:

• When no ghosts are present

• When a ghost follows PacMan

• When a ghost is in front of PacMan

• When a ghost will get to the same junctions as Ms
PacMan, either before or after Ms PacMan

In practice, Ms PacMan gets cornered very often. Some-
thing that could have been prevented if the dangerousness
was more realistic. Furthermore, in some mazes, there are
many junctions very close to each other which seems to be
problematic as the current algorithm code explores adja-
cent nodes to Ms PacMan and adjacent paths to this nodes
only. The code fails to detect nearby ghosts when at least
two junctions are very close to each other. Sometimes, this
forces Ms PacMan to oscillate and get eaten, this is why a
run away strategy was implemented in case the ghosts get
too close to Ms PacMan.

7.3.2 Second approach
Using multiple strategies seems to achieve better results in
the general case, but may achieve poorly in some cases. We
could certainly have used a single strategy and yet achieved
the same results as when using two strategies, by simply
adding a moving cluster for every edible ghost.

7.4 Further work
This AI controller is not particularly intelligent. It fails to
provide an accurate overview of the maze and thus fails
to avoid being cornered by ghosts. By simply modelling
the dangerousness function more appropriately and with
a deeper knowledge of the maze and the ghosts, we may
achieve better results without changing the fundamentals of
the algorithm. This work is yet to be done.

8. COMMENTS
The latest implementation of Ms PacMan controller can be
found online at github 2: src/pacman/entries/pacman/ My-
PacMan.java There seems to be a bug in the dangerousness
function where it wrongly computes a dangerousness value
forcing Ms PacMan to go directly to a ghost (when both are
very close to a junction). The run away from ghosts strategy
is a work around for this problem.

9. DISCUSSION WITH RESPECT TO AI
Our Ms PacMan final implementation controller uses dif-
ferent strategies and agent architectures. It is a mixture
between a reactive agent 3 and a reinforcement learning ap-
proach 4. It is a reactive agent as it checks whether a ghost

2https://github.com/recastrodiaz/MsPacMan
3urlhttps://www.scss.tcd.ie/ luzs/t/cs7032/reactive-
notes.pdf
4urlhttps://www.scss.tcd.ie/ luzs/t/cs7032/efeedback-
notes.pdf

is near Ms PacMan and then locks its target to that ghost
or runs away if it is too close. It is an evaluative feedback
agent as it compares different alternatives by greedily choos-
ing a target and then a direction. Sometimes, when a target
does not evaluates all possible directions, other safe direc-
tions might be chosen instead. This last approach is very
similar to the epsilon-greedy method used in the n-armbed
bandit example.

10. CONCLUSIONS
Developing an effective intelligent and autonomous agent is
quite complex. Abstract architectures certainly help defin-
ing the agent’s behaviour, but in practice, these need a lot
of tweaking to make them work as expected. Fortunately,
creating an autonomous agent is a very rewarding experi-
ence.

